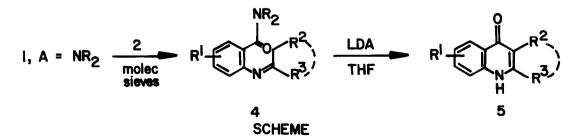

SYNTHETIC CONNECTIONS TO THE AROMATIC DIRECTED METALATION REACTION.

A MODIFIED VON NIEMENTOWSKI QUINOLINE SYNTHESIS FROM ANTHRANILAMIDES


R.J. Chong, M.A. Siddigui, and V. Snieckus* Guelph-Waterloo Centre for Graduate Work in Chemistry University of Waterloo, Waterloo, Canada N2L 3G1

Summary: Anthranilamides 1, A = NR₂ derived from benzamides by directed ortho metalationamination, are converted into the corresponding imines 4 which upon treatment with LDA lead to substituted 4-quinolones 5 thus providing a general new quinoline synthesis (Table).

The classical Friedlander and the related Pfitzinger and von Niementowski reactions (Scheme, $1 + 2 \rightarrow 3$) constitute flexible methodologies for the construction of 1-, 3-, and 4but not 5-. 6-. 7-. and 8- ring substituted guinolines owing to the poor accessibility of substituted o-amino carbonyl components (1). We report on a variant of the von Niementowski synthesis via 4 leading to 4-quinolones (5) which a) is analogous to our recently reported anionic aromatic ring annelation of o-allyl benzamides;² and b) is based on the benzamide directed ortho metalation tactic³ for the formation of the key anthranilamide precursors 1, $A = NR_2$; and c) may be carried out under comparatively mild, base-catalyzed

A = H, R (Friedländer); A = CO₂Na 🗯 Isatin A = OH, OR (von Niementowski) (Pfitzinger) ;

conditions. In view of the ready availability of substituted anthranilamides 1 by the regiospecific ortho metalation-amination sequence,⁴ this methodology promises to be a generally useful modification of the von Niementowski process for quinoline ring construction.

Anthranilamides 1, $A = NR_2^2$ were converted into the corresponding imines 4 ⁵ which were inconvenient to purify and therefore were thoroughly dried and used directly in the heteroannelation reaction. Treatment of 4 with LDA (THF/0°C + RT or reflux) led to the 4-quinolones 5 in good to excellent yields. The results are summarized in the **Table**. A number of 2-substituted 4-quinolones (6a-e) are readily accessible under mild conditions including the 2-carboethoxy derivative 6e. Steric effects to cyclization resulting from amide N-substitution appear not to be significant as evidenced from comparison of formation of 6a from either the dimethyl (1a) or diethyl (1b) amide. Unsymmetrical ketones led regiospecifically to the 4-quinolone with the smaller 3-substituent, e.g. 6c and 7. Annelated products are easily obtained, e.g. 9.

Of greater significance for the scope of this heteroannelation tactic are the smooth conversions of methoxy-substituted anthranilamides **10** and **12** into the corresponding **4**-quinolones **11** and **13** bearing substituents on the benzene ring.⁶ As an extension to more highly condensed systems, the 2-amino-1-naphthamide **14** was subjected to the two-step procedure to give the benzoquinolone **15** in good yield.

These observations coupled with the previous results of anionic <u>o</u>-allyl benzamide cyclizations² suggest the emergence of a chameleon character for the amide functionality: on the one hand, it resists nucleophilic attack by alkyllithiums and instead serves as a powerful ortho metalation director at low temperatures; on the other hand, it participates in intramolecular carbanionic attack at higher temperatures. Generalization and extension of the modified von Niementowski synthesis is in progress.⁷

Typical Procedure. A solution of 1.0 equiv. of the imine and 2.0 equiv. of LDA (obtained either as a 2.0 M solution in C_6H_{12} (Lithium Corp) or pre-formed from a solution of <u>i</u>-Pr₂NH in THF and <u>n</u>-BuLi in hexane) in THF (20 mL/mmol of imine) was mixed at 0°C under Ar. The resulting orange reaction mixture was stirred at the appropriate temperature (RT or at reflux) for 3-12 h. The reaction was then quenched with MeOH and the solvent was removed in vacuo. Salts were removed from the crude residue by filtration through silica gel usingCH₂Cl₂-MeOH (10:1). The filtrate was evaporated and the residue was purified by flash chromatography using CH₂Cl₂-MeOH or Et₂O-MeOH as eluant to give the pure product.

Anthranilamide ^a	Carbonyl Compound	Reaction Conditions ^b	Quinolone Derivative ^C	Yield, % ^d	mp °C (lit mp)
CONR ₂					
1 (A = NR ₂) 1a (R = Me)	0	A	6 6a (R = Me)	45	233-235(MeOH/ CHCl ₃) (234-236) ^e
1b (R = Et)	0	А	6a (R = Me)	55	233-235 (234-236) ^e
1b	0	A	6b (R = Et)	95	176-177(Me ₂ CO) (180-181) ^f
15	0	^A	6c (R = <u>n</u> -Penty	/1) 93	134-138(hex-CH ₂ Cl ₂) (128)9
1b	O Ph	A	6d (R = Ph)	70	249-250(EtOH) (250.3-250.7)h (259-260)h
1b		A te	6e (R=CO ₂ Et) O M	64	213-217(CH ₂ Cl ₂ - MeOH) (214-215) ⁱ
1b	0	A		~ ₅₈	254-258
16	0	В		70	330-333 (MeOH-CHCl ₃)
NH2	0	C	MeO NH H H 11 O	/3	289-290(MeOH- Et ₂ 0) (292)j
MeO 12	o the	A	MeO 13	95	226-228 (229) ⁱ
14 CONEt2 NF	^{t2} 0	В		84	345-347 (332-333) ^k

Table.	Synthesis	of	4-Quinolone	Derivatives

Footnotes to Table

^a With the exception of N,N-diethyl anthranilamide, which was obtained by standard procedures, all the starting materials were prepared according to ref. 4. ^b Condition A: O°C to room temperature, 8-12 h. Condition B: Heated at reflux for 8-12 h. Condition C: Heated at reflux for 3 h. ^C All new compounds show spectral (IR, NMR, MS) data consistent with the assigned structures. ^d All yields are of chromatographically pure materials. ^e Limpach, L. <u>Chem. Ber</u>. **1931**, 64, 969. ^f Austin, W.C.; Hunts, L.H.C.; Potter, M.D.; Taylor, E.P. <u>J. Pharma. Pharmacol</u>. **1959**, 11, 80. ^g Buu-Hoi, N.P.; Royer, R.; Xuong, N.D.; Jacquignon, P. <u>J. Org. Chem</u>. **1953**, 18, 1209. ^h Fuson, R.C.; Burness, D.M. <u>J. Am. Chem</u>. <u>Soc</u>. **1948**, 68, 1270. ⁱ Baker, J.T.; Duke, C.C. <u>Austr. J. Chem</u>. **1976**, 29, 1023. ^j Salzer, W.; Timmler, H.; Andersag, H. <u>Chem. Ber</u>. **1948**, 81, 12. ^k Desai, K.; Desai, C.M. <u>Ind. J.</u> <u>Chem</u>. **1967**, 5, 170.

References and Footnotes

- Jones, G. In Jones, G. Ed. "Quinolines, Pt I. The Chemistry of Heterocyclic Compounds," Vol. 32, Wiley, New York, 1977, pp 181-191, 195-207.
- 2. Sibi, M.P.; Dankwardt, J.W.; Snieckus, V. J. Org. Chem. 1986, 51, 531.
- Snieckus, V. Lect. Heterocyclic Chem. Suppl. J. Heterocyclic Chem. 1984, 95; Beak, P.;
 Snieckus, V. Accts. Chem. Research, 1982, 15, 306.
- 4. Reed, J.N.; Snieckus, V. Tetrahedron Lett. 1983, 3795.
- 5. Imines were prepared by treatment of the anthranilamides at room temperature with the carbonyl compound as solvent (volatile ketones) for 2-7 days or in benzene at reflux (PhCOMe, cyclohexanone) for 2 days and were obtained generally in 85-95% (estimated by NMR). In view of their hydrolytic instability, the imines were dried at high vacuum and used immediately in the cyclization reactions.
- Very few substituted anthranilic acid derivatives have been used in the original von Niementowski synthesis, see ref. 1, p 195.
- 7. We are grateful to NSERC Canada and Merck Frosst Canada for financial support of our synthetic programs.

(Received in USA 19 August 1986)